ฟอลต์แบบไม่สมมาตร
(Unsymmetrical Fault)

ประเภทของฟอลต์แบบไม่สมมาตร

• Single Line to Ground Fault
• Line to Line Fault
• Double Line to Ground Fault

Single Line to Ground Fault

จากระบบ 3 เฟส ถ้าไม่มีการจ่ายโหลด (no load) เฟส A เท่านั้นเกิดฟอลต์ลงดิน เท่านั้น

\[V_a = Z_f I_a \]

\[I_b = I_c = 0 \]

จากระบบ

\[
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix}
\]

จำได้ว่า

\[
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
I_a \\
0 \\
0
\end{bmatrix}
\]
จาก

\[
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix} = \frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}
\begin{bmatrix}
I_a \\
0 \\
0
\end{bmatrix}
\]

จะได้

\[I_{a0} = I_{a1} = I_{a2} = \frac{1}{3} I_a \]

จากสมการข้างล่างคับ ของเครื่องกำเนิดไฟฟ้า จะได้

\[
\begin{bmatrix}
V_{a0} \\
V_{a1} \\
V_{a2}
\end{bmatrix} = \begin{bmatrix}
0 & Z_0 & 0 & 0 \\
E_a & 0 & Z_1 & 0 \\
0 & 0 & 0 & Z_2
\end{bmatrix}
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix}
\]

จะได้ส่วนประกอบสมมาตรแรงดันเป็น

\[
\begin{align*}
V_{a0} &= -Z_0 I_{a0} \\
V_{a1} &= E_a - Z_1 I_{a0} \\
V_{a2} &= -Z_2 I_{a0}
\end{align*}
\]

จาก

\[V_a = V_{a0} + V_{a1} + V_{a2} \]

\[= E_a - (Z_1 + Z_2 + Z_0) I_{a0} \]

โดยที่

\[Z_1 = Z_{s1} \quad Z_2 = Z_{s2} \quad Z_0 = Z_{s0} + 3Z_n \]

แต่จากการข้างบนว่า

\[V_a = Z_f I_a \]

ทำให้ได้สมการเป็น

\[Z_f I_a = E_a - (Z_1 + Z_2 + Z_0) I_{a0} \]

จาก

\[I_{a0} = \frac{1}{3} I_a \]

จะได้

\[Z_f (3I_{a0}) = E_a - (Z_1 + Z_2 + Z_0) I_{a0} \]

จะได้

\[I_{a0} = I_{a1} = I_{a2} = \frac{1}{3} I_a \]

จาก

\[I_{a0} = \frac{E_a}{Z_1 + Z_2 + Z_0 + 3Z_f} \]

จะได้

\[I_a = 3I_{a0} \]

จาก

\[I_{a0} = \frac{1}{3} I_a \]

จะได้

\[I_a = 3I_{a0} \]

\[= 3 \left(\frac{E_a}{Z_1 + Z_2 + Z_0 + 3Z_f} \right) \]

\[= \frac{3E_a}{Z_1 + Z_2 + Z_0 + 3Z_f} \]
จากการที่สามารถหา V_a ได้จาก

$$V_a = V_{a0} + V_{a1} + V_{a2}$$

สามารถหาแรงดันเฟสที่เฟสอื่นๆ โดยใช้ความสัมพันธ์ของส่วนประกอบสมมาตร

$$V_b = V_{a0} + a^2V_{a1} + aV_{a2}$$

$$V_c = V_{a0} + aV_{a1} + a^2V_{a2}$$

จากแรงดันเฟสที่ได้ สามารถนำมาหารแรงดันระหว่างสาย ได้จาก

$$V_{ab} = V_a - V_b$$

$$V_{bc} = V_b - V_c$$

$$V_{ca} = V_c - V_a$$

วงจรข่ายลำดับต่างๆ กรณีเกิด Single Line to Ground Fault

$$Z_f = Z_{n0} + 3Z_n$$

Z_f (Fault Impedance) ถือจาก

- ความต้านทานของสายไฟฟ้า
- ความต้านทานของต้นไม้
Line to Line Fault

From a three-phase system without load (no load), a fault occurs between phase b and phase c.

\[I_a = 0 \]

\[Z_f \]

\[V_a - V_c = Z_f I_b \]

\[I_b + I_c = 0 \]

And

\[I_a = 0 \]

From

\[I_{a0} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} I_b \]

and

\[I_{a1} = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

and

\[I_{a2} = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

With the substations, the voltages in each component are as follows:

\[V_{a0} = 0 \]

\[V_{a1} = E_a - Z_i I_{a1} \]

\[V_{a2} = Z_2 I_{a1} \]
จากสมการ \(V_b - V_c = Z_f I_b \)

จากความสัมพันธ์ของส่วนประกอบสมมาตร
\[
V_a = V_{a0} + V_{a1} + V_{a2} \\
V_b = V_{a0} + a^2V_{a1} + aV_{a2} \\
V_c = V_{a0} + aV_{a1} + a^2V_{a2}
\]

จะได้
\[
V_b - V_c = (a^2 - a)V_{a1} + (a-a^2)V_{a2} = (a^2 - a)(V_{a1} - V_{a2}) = Z_f I_b
\]

แทนค่า \(V_{a1} = E_a - Z_I I_a \) และ \(V_{a2} = Z_I I_a \) จะได้
\[
V_b - V_c = (a^2 - a)(V_{a1} - V_{a2}) = (a^2 - a)((E_a - Z_I I_a) - (Z_I I_a)) = (a^2 - a)[E_a - (Z_I + Z_J) I_a]
\]

จะได้
\[
(a^2 - a)[E_a - (Z_I + Z_J) I_a] = Z_f I_b
\]

หา \(I_b \) เพื่อที่จะนำมาส่วนประกอบกระแสลำดับต่างๆ ดังนี้

หาก \(I_b \) จาก
\[
I_{a1} = \frac{1}{3}(a - a^2)I_b \quad \rightarrow I_b = \frac{3I_{a1}}{(a - a^2)}
\]

จาก
\[
(a^2 - a)[E_a - (Z_I + Z_J) I_a] = Z_f I_b
\]

จะได้
\[
(a^2 - a)[E_a - (Z_I + Z_J) I_a] = Z_f \left(\frac{3I_{a1}}{(a - a^2)} \right) = E_a - (Z_I + Z_J) I_a = Z_f \left(\frac{3I_{a1}}{(a - a^2)} \right)
\]

\[
[E_a - (Z_I + Z_J) I_a] = Z_f \left(\frac{3I_{a1}}{(a - a^2)} \right)
\]

\[
= Z_f \left(\frac{3I_{a1}}{(a - a^2)} \right)
\]

จะได้ส่วนประกอบกระแสเฟส 0 ลำดับบวก
\[
I_{a1} = \frac{E_a}{Z_I + Z_J + Z_f}
\]

จาก
\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix}\begin{bmatrix}
0 \\
I_{a1} \\
-1_{a1}
\end{bmatrix}
\]

จะได้กระแสเฟส 0 เป็น
\[
I_b = -I_a = (a^2 - a)I_{a1} = -j\sqrt{3} \cdot I_{a1}
\] **
รู้ I_{a1} สามารถหาส่วนประกอบแรงดันเฟส a ลำดับต่างๆ ได้จาก

$$V_{a0} = 0$$

$$V_{a1} = E_a - Z_I I_{a1}$$

$$V_{a2} = Z_I I_{a1}$$

หาแรงดันเฟสต่างๆ ได้เป็น

$$V_a = V_{a0} + V_{a1} + V_{a2}$$

$$V_b = V_{a0} + a^2 V_{a1} + a V_{a2}$$

$$V_c = V_{a0} + a V_{a1} + a^2 V_{a2}$$

หาแรงดันระหว่างสาย ได้เป็น

$$V_{ab} = V_a - V_b$$

$$V_{bc} = V_b - V_c$$

$$V_{ca} = V_c - V_a$$

หาแรงดันระหว่างสาย a และ b ที่ไหลในวงจรข่ายลำดับต่างๆ กรณีเกิด Line to Line Fault

$$I_{a1} = -I_{a2}$$

ไม่มีวงจรข่ายลำดับศูนย์

* Double Line to Ground Fault

จากระบบที่ 3 เฟส ในรูป สมมติว่ายังไม่มีการจ่ายโหลด (no load)

ก็ต่อคีย์เฟส b กับ เฟส c ลงดิน (มีฟอลต์อิมพีแดนซ์ Z_f)

$$V_b = V_c$$

๒๓

$$= Z_f (I_a + I_b)$$

กระแสที่ไหลในเฟส a เท่ากับ 0 จะได้

$$I_a = 0$$

$$I_{a0} + I_{a1} + I_{a2} = 0$$

ทำให้ $I_{a0} = -I_{a1} - I_{a2}$
จากความสัมพันธ์ของส่วนประกอบแรงดันแต่ละเฟส

\[V_a = V_{a0} + V_{a1} + V_{a2} \]
\[V_b = V_{a0} + a^2V_{a1} + aV_{a2} \]
\[V_c = V_{a0} + aV_{a1} + a^2V_{a2} \]

เนื่องจาก \(V_a = V_c \) จะได้

\[V_{a0} + a^2V_{a1} + aV_{a2} = V_{a0} + aV_{a1} + a^2V_{a2} \]
\[(a^2 - a)V_{a1} = (a^2 - a)V_{a2} \]
\[V_{a1} = V_{a2} \]

จากการที่ \(V_a = V_{a0} + a^2V_{a1} + aV_{a2} \) และ \(V_{a1} = V_{a2} \)

จะได้ \[V_b = V_{a0} + a^2V_{a1} + aV_{a1} \]
\[= V_{a0} + (a^2 + a)V_{a1} \]
\[= V_{a0} - V_{a1} \]
\[= 3Z_fI_{a0} \]
\[V_b = V_c \]

จะได้ \[V_{a0} - V_{a1} = 3Z_fI_{a0} \] \[* * \]

จากความสัมพันธ์ของส่วนประกอบกระแสแต่ละเฟส

\[I_a = I_{a0} + I_{a1} + I_{a2} \]
\[I_b = I_{a0} + a^2I_{a1} + aI_{a2} \]
\[I_c = I_{a0} + aI_{a1} + a^2I_{a2} \]

เนื่องจาก \(V_{b0} = Z_f(I_{b0} + I_{c0}) \) จะได้

\[V_{b0} = V_c = Z_f \left[(I_{a0} + a^2I_{a1} + aI_{a2}) + (I_{a0} + aI_{a1} + a^2I_{a2}) \right] \]
\[= Z_f (2I_{a0} - I_{a1} - I_{a2}) \]
\[= Z_f (2I_{a0} + I_{a0}) \]
\[= 3Z_fI_{a0} \]

จาก \[V_{a0} = Z_0I_{a0} \] \[V_{a1} = E_a - Z_1I_{a1} \] \[V_{a2} = -Z_2I_{a2} \]

จาก \(V_{a0} - V_{a1} = 3Z_fI_{a0} \) จะได้ \[(E_a - Z_1I_{a1}) = 3Z_fI_{a0} \]
\[-(E_a - Z_1I_{a1}) = 3Z_fI_{a0} - (E_a - Z_1I_{a1}) \]
\[I_{a0} = \frac{E_a - Z_1I_{a1}}{Z_0 + 3Z_f} \]
จาก $\begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix} = \begin{bmatrix} 0 & Z_0 & 0 \\ E_a & 0 & Z_1 \\ 0 & 0 & Z_2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{a1} \\ I_{a2} \end{bmatrix}$

$V_{a0} = -Z_0 I_{a0}$

$V_{a1} = E_a - Z_1 I_{a1}$

$V_{a2} = -Z_2 I_{a2}$

จาก $V_{a1} = V_{a2}$ จะได้ $E_a - Z_1 I_{a1} = -Z_2 I_{a2}$

$I_{a2} = \frac{E_a - Z_1 I_{a1}}{Z_2}$

จาก I_{a0} และ I_{a2} นั้นจะได้ I_{a1} ดังนี้

$I_a = I_{a0} + I_{a1} + I_{a2} = 0$

$I_{a1} = -I_{a0} - I_{a2}$

$I_{a1} = -\left(\frac{E_a - Z_1 I_{a1}}{Z_0 + 3Z_f}\right) - \left(\frac{E_a - Z_1 I_{a1}}{Z_2}\right)$

$I_{a1} + \frac{Z_1 I_{a1}}{Z_0 + 3Z_f} + \frac{Z_1 I_{a1}}{Z_2} = \frac{E_a}{Z_0 + 3Z_f} + \frac{E_a}{Z_2}$

$I_{a1} = \frac{E_a}{Z_1 + \frac{Z_2 (Z_0 + 3Z_f)}{Z_2 + Z_0 + 3Z_f}}$

สามารถหาค่า I_{a0}, I_{a2} โดยการแทนค่า I_{a1} ลงไป

$I_{a0} = -\frac{E_a - Z_1 I_{a1}}{Z_0 + 3Z_f}$

$I_{a1} = \frac{E_a}{Z_1 + \frac{Z_2 (Z_0 + 3Z_f)}{Z_2 + Z_0 + 3Z_f}}$

$I_{a2} = \frac{E_a - Z_1 I_{a1}}{Z_2}$

* หากผ่อนแยง
กระแสแต่ละเฟส ของภัยกิจ Double Line to Ground Fault เฟส b, c

จาก

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{a0} \\
I_{b1} \\
I_{c2}
\end{bmatrix}
\]

จะได้

\[
I_a = I_{a0} + I_{a1} + I_{a2}
\]
\[
I_b = I_{a0} + a^2 I_{a1} + a I_{a2}
\]
\[
I_c = I_{a0} + a I_{a1} + a^2 I_{a2}
\]

หากระแสฟอลต์

\[
I_f = I_b + I_c
\]

\[
= (I_{a0} + a^2 I_{a1} + a I_{a2}) + (I_{a0} + a I_{a1} + a^2 I_{a2})
\]

\[
= 2I_{a0} - I_{a1} - I_{a2}
\]

\[
= 2I_{a0} + I_{a0}
\]

\[
= 3I_{a0}
\]

แรงดันแต่ละเฟส ของภัยกิจ Double Line to Ground Fault เฟส b, c

• จากความสัมพันธ์ของส่วนประกอบแรงดันแต่ละเฟส

\[
V_a = V_{a0} + V_{a1} + V_{a2}
\]

\[
V_b = V_{a0} + a^2 V_{a1} + a V_{a2}
\]

\[
V_c = V_{a0} + a V_{a1} + a^2 V_{a2}
\]

โดยที่

\[
V_b = V_c = 3Z f I_{a0}
\]
ตัวอย่างที่ 1

ระบบไฟฟ้าดังรูป เครื่องกำเนิดไฟฟ้าแต่ละตัว มีค่า current limiting reactor 0.25/3 p.u. บนค่าฐาน 100 MVA. ด้านข้างต่อแสดงในตารางที่ 1 โดยเครื่องกำเนิดไฟฟ้าอยู่ในภาวะไม่มีโหลด มีแรงดันและความถี่ที่ค่าพิกัด และมีแหล่งจ่ายดังนี้ 2 เครื่อง

![Diagram](image1.png)

\[E_{G1} = E_{G2} = 1.0 \]

ตารางที่ 1

<table>
<thead>
<tr>
<th>รายการ</th>
<th>Base MVA</th>
<th>Voltage Rating</th>
<th>X^1</th>
<th>X^2</th>
<th>X^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>G2</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>T1</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>T2</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>L12</td>
<td>100</td>
<td>220 kV</td>
<td>0.125</td>
<td>0.125</td>
<td>0.30</td>
</tr>
<tr>
<td>L13</td>
<td>100</td>
<td>220 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>L23</td>
<td>100</td>
<td>220 kV</td>
<td>0.25</td>
<td>0.25</td>
<td>0.7125</td>
</tr>
</tbody>
</table>

จงหากระแสฟอลต์ที่เกิดขึ้น (บัส 3) เมื่อมีกระแสฟอลต์กรณีต่างๆ ดังนี้

1. Single line to Ground Fault (เฟส A) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)
2. Line to Line Fault (เฟส B,C) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)
3. Double Line to Ground Fault (เฟส B,C) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)

ขั้นตอนการคำนวณ

• หาวงจรข่ายลำดับต่างๆ (ลำดับบวก, ลำดับลบ, ลำดับศูนย์)
• นำวงจรข่ายลำดับที่ได้ ล่อเป็นวงจรกรณีเกิดฟอลต์ไม่สมมาตรแบบต่างๆ
• คำนวณหากระแสฟอลต์กรณีต่างๆ จากวงจรข่ายลำดับ

ตารางที่ 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Base MVA</th>
<th>Voltage Rating</th>
<th>X^1</th>
<th>X^2</th>
<th>X^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>G2</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>T1</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>T2</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>L12</td>
<td>100</td>
<td>220 kV</td>
<td>0.125</td>
<td>0.125</td>
<td>0.30</td>
</tr>
<tr>
<td>L13</td>
<td>100</td>
<td>220 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>L23</td>
<td>100</td>
<td>220 kV</td>
<td>0.25</td>
<td>0.25</td>
<td>0.7125</td>
</tr>
</tbody>
</table>

หากระแสฟอลต์ที่เกิดขึ้น (บัส 3) เมื่อมีกระแสฟอลต์กรณีต่างๆ ดังนี้

1. Single line to Ground Fault (เฟส A) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)
2. Line to Line Fault (เฟส B,C) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)
3. Double Line to Ground Fault (เฟส B,C) ที่บัส 3 โดยที่ \(Z_f = j0.1 \)

ขั้นตอนการคำนวณ

• หาวงจรข่ายลำดับต่างๆ (ลำดับบวก, ลำดับลบ, ลำดับศูนย์)
• นำวงจรข่ายลำดับที่ได้ ล่อเป็นวงจรกรณีเกิดฟอลต์ไม่สมมาตรแบบต่างๆ
• คำนวณหากระแสฟอลต์กรณีต่างๆ จากวงจรข่ายลำดับ
แปลงวงจรแบบ Δ ให้เป็นแบบ Y

$$Z_{AB} = \frac{Z_{AB} + Z_{BC} + Z_{CA}}{Z_{C}}$$

$$Z_{AC} = \frac{Z_{AC} + Z_{BC} + Z_{CA}}{Z_{A}}$$

$$Z_{BC} = \frac{Z_{BC} + Z_{AC} + Z_{CA}}{Z_{B}}$$

หาวงจรเทวินิน แทนวงจรลำดับบวก

$$E = 1.0$$

$$Z_1 = j0.071426 + \frac{(j0.2857143)(j0.3095238)}{(j0.2857143 + j0.3095238)} = j0.22$$
หาวงจรข่ายลำดับลบ เมื่อเกิดฟอลต์บัส 3

ตารางที่ 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Base MVA</th>
<th>Voltage Rating</th>
<th>X^1</th>
<th>X^2</th>
<th>X^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>G_2</td>
<td>100</td>
<td>20 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>T_1</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>T_2</td>
<td>100</td>
<td>20/220 kV</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>L_{12}</td>
<td>100</td>
<td>220 kV</td>
<td>0.125</td>
<td>0.125</td>
<td>0.30</td>
</tr>
<tr>
<td>L_{13}</td>
<td>100</td>
<td>220 kV</td>
<td>0.15</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>L_{23}</td>
<td>100</td>
<td>220 kV</td>
<td>0.25</td>
<td>0.25</td>
<td>0.7125</td>
</tr>
</tbody>
</table>

อิมพีแดนซ์ของวงจรข่ายลำดับบวกและลำดับลบเหมือนกัน

$$Z_1 = Z_2 = j0.22$$

** ไม่มีแหล่งจ่ายแรงดันจากเครื่องจักรกลไฟฟ้า

วงจรข่ายลำดับลบ

Positive Sequence

Negative Sequence

Negative Sequence Network
หาวงจรลำดับศูนย์ เมื่อเกิดฟอลท์บัส 3

- ไม่มีแหล่งจ่ายแรงดันจากเครื่องจักรกลไฟฟ้า
- คิดค่า Z_n ได้จาก current limiting reactance ของเครื่องกำเนิดไฟฟ้า
- พิจารณารูปแบบการต่อวงจรลำดับศูนย์ ของเครื่องกำเนิดไฟฟ้า และเหมือนแปลงให้ถูกต้อง

หาวงจรเทวินิน แทนวงจรลำดับศูนย์

$Z_n = \frac{(j0.30)(j0.35)}{j1.3625}$
$= j0.0770642$

$Z_{n1} = \frac{(j0.30)(j0.7125)}{j1.3625}$
$= j0.1568807$

$Z_{n2} = \frac{(j0.35)(j0.7125)}{j1.3625}$
$= j0.1830257$

Zero Sequence
จะได้ \[Z_0 = j0.1830275 + \frac{(j0.4770642)(j0.2568807)}{(j0.4770642 + j0.2568807)} \]
= \[j0.1830275 + j0.1669725 = j0.35 \]

\[Z = \begin{bmatrix} 0.4770642 & 0.2568807 \\ 0.2568807 & 0.4770642 \end{bmatrix} \]

\[Z_{33,0} = j0.35 \]

\[Z_{a0} = \frac{E_a}{Z_1 + Z_2 + Z_0 + 3Z_f} = \frac{1.0}{j0.22 + j0.22 + j0.35 + 3(j0.1)} = -j0.9174 \]

\[\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{b0} \\ I_{c0} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{b0} \\ I_{c0} \end{bmatrix} \]

\[= \begin{bmatrix} 3I_{a0} \\ 0 \\ 0 \end{bmatrix} = 3(-j0.9174) \]

จะได้ \[\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} -j2.7523 \\ 0 \\ 0 \end{bmatrix} \]

จากข้อ 3 เฉพาะที่บัส 3
Line to Line Fault

\[
I_{a1} = j0.22 \\
I_{a2} = j0.22 \\
1.0 = E_a \\
V_{a1} + V_{a2} \\
Z_f = j0.1
\]

- No common component \(I_{a0} = 0 \)
- Find the fault current from the common component of the positive and negative components \(I_{a1} = -I_{a2} \)

\[
I_{a1} = \frac{E_a}{Z_1 + Z_2 + Z_f} = \frac{1}{j0.22 + j0.22 + j0.1} = -j1.8519
\]

Double Line to Ground Fault

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
0 \\
-I_{a2} \\
-I_{a2}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
0 \\
-j1.8519 \\
j1.8519
\end{bmatrix}
\]

\[
\begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix}
= \begin{bmatrix}
0 \\
-3.2075 \\
3.2075
\end{bmatrix}
\]

\[
E_a = 1.0 \\
V_{a1} + V_{a2} \\
V_{a0}
\]

\[
Z_f = 3(j0.1)
\]
หา I_{a1} จาก $I_{a1} = \frac{E_a}{Z_1 + \frac{Z_3(Z_0 + 3Z_f)}{Z_2 + Z_0 + 3Z_f}}$

$$= \frac{1.0}{j0.22 + j0.22(0.35 + j0.3)}$$

$$= -j2.6017$$

หา I_{a2} จาก $I_{a2} = \frac{E_a - Z_1I_{a1}}{Z_2}$

$$= \frac{-1.0 - (0.22)(-2.6017)}{j0.22}$$

$$= j1.9438$$

หา I_{a0} จาก $I_{a0} = \frac{E_a - Z_1I_{a1}}{Z_0 + 3Z_f}$

$$= \frac{-1.0 - (0.22)(-2.6017)}{j0.22 + j0.3}$$

$$= j0.6579$$

• กระแสเฟส (Double Line to Ground Fault) ที่บัส 3

$$\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{a1} \\ I_{a2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} 0 \\ j0.6579 \\ j1.9438 \end{bmatrix}$$

กระแสโฟลต์จาก $I_{f3} = I_b + I_c = 4.058 \angle 165.93^\circ + 4.058 \angle 14.07^\circ = 1.9732 \angle 90^\circ$

การวิเคราะห์พอลต์ไม่สมมาตรโดยใช้เมตริกอิมพีแดนซ์

• เหมาะสำหรับวิเคราะห์กรณีเกิดพอลต์กับระบบขนาดใหญ่ (หลายบัส หลายกิ่ง) จะสะดวกกว่าใช้วิธียุบวงจร (เทวินิน)

• ใช้ $[Z]$ ของวงจรข่ายแต่ละลำดับมาใช้ในการวิเคราะห์

กำหนด

$[Z_0]$ - метрิกวงจรข่ายลำดับสูง

$[Z_1]$ - метрิกวงจรข่ายลำดับกับ

$[Z_2]$ - метрิกวงจรข่ายลำดับลบ

** เป็นเมตริกซ์สมมาตร

** สมาชิกในแนวทแยงเป็นอิมพีแดนซ์เทวินินของบัสต่างๆ
กรณีเกิดฟอลต์ที่บัส k จะได้มีเพียงแค่ข้อมูลของวงจรข่ายแต่ละลำดับจาก

- **วงจรข่ายลำดับบวก** $\rightarrow Z_{1k}^1$ เป็นสมาชิกแถวที่ k หลักที่ k ของเมตริก $[Z_1]$ ของวงจรข่ายลำดับบวก 1 กับที่ k ของบัส k ของบัส k ของบัส k ของบัส k ของบัส k

- **วงจรข่ายลำดับลบ** $\rightarrow Z_{2k}^2$ เป็นสมาชิกแถวที่ k หลักที่ k ของเมตริก $[Z_2]$ ของวงจรข่ายลำดับลบ 2 กับที่ k ของบัส k ของบัส k ของบัส k ของบัส k ของบัส k

- **วงจรข่ายลำดับศูนย์** $\rightarrow Z_{0k}^0$ เป็นสมาชิกแถวที่ k หลักที่ k ของเมตริก $[Z_0]$ ของวงจรข่ายลำดับศูนย์ 0 กับที่ k ของบัส k ของบัส k ของบัส k ของบัส k ของบัส k

Single Line to Ground Fault

Bus k of network
- **เกิดฟอลต์ที่บัส k**
- **หา $[Z_1], [Z_2], [Z_0]$**
- **หาเพียงแค่ข้อมูลข่ายลำดับต่างๆ** $Z_{1k}^1, Z_{2k}^2, Z_{0k}^0$
- **คำนวณกระแสฟอลต์ได้จากวงจรข่าย**

กรณี Single line to Ground Fault

สามารถหาส่วนประกอบกระแสฟอลต์ที่บัส k ได้ทั้งหมด

$$I_k^0 = I_k^{a1} = I_k^{a2} = \frac{V_k(0)}{Z_{1k}^1 + Z_{2k}^2 + Z_{0k}^0 + 3Z_f}$$

หากระแสฟอลต์ที่บัส k โดยเกิดฟอลต์ได้จาก

$$\begin{bmatrix} I_k^a \\ I_k^b \\ I_k^c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} I_k^{a1} \\ I_k^{a2} \end{bmatrix}$$

หรือ

$$I_k^{abc} = A I_k^{012}$$

เมื่อ $V_k(0)$ คือ แรงดันเฟสที่ บัส k ก่อนเกิดฟอลต์ (Pre–Fault)

** ภาวะไม่มีโหลด $V_k(0) = E_a$
Line to Line Fault

- เกิดฟอลต์ที่บัส k
- หา $[Z_1], [Z_2], [Z_0]$
- หาอิมพีแดนซ์วงจรข่ายลำดับต่างๆ Z_{1k}, Z_{2k}, Z_{0k}
- ค่าวนกระแสฟอลต์ได้จากวงจรข่าย
กรณี Line to Line Fault

$$I_{a0}^k = 0$$
$$I_{al}^k = I_{al}^0 = \frac{V_k(0)}{Z_{1k} + Z_{2k} + 3Z_f}$$

หากกระแสฟอลต์เฟสต่างๆที่บัส k จะเกิดฟอลต์ได้จาก

$$\begin{bmatrix}
I_a^k \\
I_b^k \\
I_c^k
\end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\
1 & a & a^2 \\
1 & a^2 & a
\end{bmatrix} \begin{bmatrix}
I_{a0}^k \\
I_{al}^k \\
I_{al}^0
\end{bmatrix}$$

หรือ $I_{abc}^k = A I_{a0}^{012}$

Double Line to Ground Fault

- เกิดฟอลต์ที่บัส k
- หา $[Z_1], [Z_2], [Z_0]$
- หาอิมพีแดนซ์วงจรข่ายลำดับต่างๆ Z_{1k}, Z_{2k}, Z_{0k}
- ค่าวนกระแสฟอลต์ได้จากวงจรข่าย
กรณี Double Line to Ground Fault

- กระแสฟอลต์ $I_{abc}^k = I_c^k + I_b^k$
วงจรข่ายลำดับ กรณีเกิด Double Line to Ground Fault ที่บัส k

กรณีเกิด Double Line to Ground Fault ที่บัส k (Pre – Fault)

เมื่อ $V_k(0)$ คือ แรงดันเฟสที่ บัส k ก่อนเกิดเพลิง (Pre – Fault)

** ภาวะไม่มีโหลด $V_k(0) = E_a$

หากระแสเฟสต่างๆ ที่บัส k ขณะเกิดฟอลต์ได้จาก

$$I_{k}^{a, b, c} = A^{012}I_{k}^{0, 1, 2}$$

กระแสเพลิง เท่ากับ

$$I_k(F) = I_k^0 + I_k^1$$

สามารถหาส่วนประกอบกระแสเพลิงที่บัส k ได้ดังนี้

** ลำดับบวก

$$I_{k}^{a} = \frac{V_k(0)}{Z_{kk}^2 + Z_{kk}^0 + 3Z_f}$$

** ลำดับลบ

$$I_{k}^{a2} = \frac{V_k(0) - Z_{kk}^1 I_{k}^{a1}}{Z_{kk}^0}$$

** ลำดับศูนย์

$$I_{k}^{a0} = \frac{V_k(0) - Z_{kk}^1 I_{k}^{a1}}{Z_{kk}^0 + 3Z_f}$$

แรงดันที่บัสต่างๆ ขณะเกิดเพลิง (Bus Voltage During Fault)

กำหนดให้ บัสที่เกิดเพลิง คือ บัส k

บัสอื่นๆ อยู่ในระบบ คือ บัส i

จากความสัมพันธ์ของส่วนประกอบกระแสระหว่างบัสกับกระแส

$$
\begin{bmatrix}
V_{a0} \\
V_{a1} \\
V_{a2}
\end{bmatrix} =
\begin{bmatrix}
Z_0 & 0 & 0 \\
0 & Z_1 & 0 \\
0 & 0 & Z_2
\end{bmatrix}
\begin{bmatrix}
I_{a0} \\
I_{a1} \\
I_{a2}
\end{bmatrix}
$$

หาอิมพีแดนซ์ที่เกี่ยวข้องกับส่วนประกอบกระแสเพลิงและบัส i
จะได้ ส่วนประกอบสมมาตรของแรงดันที่บัส i ขณะเกิดฟอลต์ เท่ากับ

$$V_i^{a0}(F) = 0 - Z_{ik}^0 I_k^{a0}$$
$$V_i^{a1}(F) = V_i^1(0) - Z_{ik}^1 I_k^{a1}$$
$$V_i^{a2}(F) = 0 - Z_{ik}^2 I_k^{a2}$$

เมื่อ $V_i^1(0) = V_i'(0)$ คือ แรงดันฟอสซินกฤตฟอลต์ที่บัส i

** ภาวะไม่มีโหลด $V_i(0) = E_a$

หาแรงดันฟอสซินกฤตฟอลต์ที่บัส i ขณะเกิดฟอลต์ได้จาก

$$\begin{bmatrix} V_i^a(F) \\ V_i^b(F) \\ V_i^c(F) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} V_i^{a0}(F) \\ V_i^{a1}(F) \\ V_i^{a2}(F) \end{bmatrix}$$

หรือ $V_i^{abc}(F) = A \cdot V_i^{012}(F)$

กระแสในกิ่งต่างๆ ขณะเกิดฟอลต์ คือ

กระแสจะไหลจากบัสที่มีแรงดันสูงกว่า ไปยังบัสที่มีแรงดันต่ำกว่า

กระแสในกิ่งต่างๆ ขณะเกิดฟอลต์ (Line Current During Fault)

ส่วนประกอบสมมาตรของกระแสฟอลต์ที่ไหลจาก บัส i ไป บัส j หาจาก

$$I_{yj}^{a0} = \frac{V_i^{a0}(F) - V_j^{a0}(F)}{Z_j^0}$$
$$I_{yj}^{a1} = \frac{V_i^{a1}(F) - V_j^{a1}(F)}{Z_j^1}$$
$$I_{yj}^{a2} = \frac{V_i^{a2}(F) - V_j^{a2}(F)}{Z_j^2}$$

** กระแสจะไหลจากบัสที่มีแรงดันสูงกว่า ไปยังบัสที่มีแรงดันต่ำกว่า
กระแสฟอลต์เฟสต่างๆ ในกรณีที่วิ่งจากบัส i ไป j ขณะเกิดฟอลต์

$$
\begin{bmatrix}
I_1^0(F) \\
I_1^1(F) \\
I_1^2(F)
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_1^0 \\
I_1^1 \\
I_1^2
\end{bmatrix}
$$

หรือ

$$I_y^{abc}(F) = A \cdot I_y^{012}$$

ขั้นตอนการวิเคราะห์

1. หา $[Z_0], [Z_1]$ และ $[Z_2]$ จากวงจรแต่ละลำดับ
2. หา Z_1^0, Z_1^1, Z_1^2
3. หากระแสฟอลต์กระแสเฟสคำถามเกิดฟอลต์ในแต่ละบัส (ใช้โหลดโฟลว์)
4. คำนวณหากระแสฟอลต์กระแสเฟสต่างๆ
5. หาส่วนประกอบสมมาตรของแรงดันแต่ละลำดับ ขณะเกิดฟอลต์
6. หาแรงดันเฟสต่ำระดับบัส ขณะเกิดฟอลต์
7. หาส่วนประกอบสมมาตรของกระแสแต่ละลำดับ ขณะเกิดฟอลต์
8. หากระแสฟอลต์ที่ไหลในแต่ละกิ่ง ขณะเกิดฟอลต์
หา $[Z_2]$ ที่ $[Z_2]$ คือ แต่ละลำดับลบของระบบ

เขียนวงจรลำดับลบของระบบ

ตัวอย่างนี้ วงจรลำดับลบเหมือนกับวงจรลำดับบวก

$[Z_2] = [Z_1] = \begin{bmatrix} j0.1450 & j0.1050 & j0.1300 \\ j0.1050 & j0.1450 & j0.1200 \\ j0.1300 & j0.1200 & j0.2200 \end{bmatrix}$

หา $[Z_0]$ ที่ $[Z_0]$ คือ แต่ละลำดับศูนย์ของระบบ

เขียนวงจรลำดับศูนย์ของระบบ

หาเมตริกแอดมิตแตนซ์ $[Y_0]$ จาก $[Z_0]$ หา $[Z_0]$ จาก $[Y_0]^{-1}$

$[Z_0] = \begin{bmatrix} j0.1820 & j0.0545 & j0.1400 \\ j0.0545 & j0.0864 & j0.0650 \\ j0.1400 & j0.0650 & j0.3500 \end{bmatrix}$

1. Single Line to Ground Fault

หาแรงดันบัสเริ่มต้น $V_1(0), V_2(0), V_0(0)$ จากโหลดโฟลว์

กรณีระบบไม่จ่ายโหลด $V_1(0) = V_2(0) = V_0(0) = 1.0$

กรณีนี้ !!!
กรณี Single Line to Ground Fault ที่บัส 3 ($Z_f = 0.1$)

- หาส่วนประกอบสมมาตรของกระแสฟอลต์ที่บัส 3 จาก

\[I_k^a = I_k^d = I_k^2 = \frac{V_k(0)}{Z_{kk}^1 + Z_{kk}^2 + Z_{kk}^b + 3Z_f} \]

\[I_3^0 = I_3^a = I_3^2 = \frac{V_3(0)}{Z_{33}^1 + Z_{33}^2 + Z_{33}^b + 3Z_f} \]

\[= \frac{1.0}{j0.22 + j0.22 + j0.35 + j3(0.1)} \]

\[= -j0.9174 \]

- หากระแสฟอลต์เฟสต่างๆ ที่บัส 3 ขณะเกิดฟอลต์ได้จาก

\[\begin{bmatrix} I_a^0 \\ I_b^0 \\ I_c^0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \]

\[\begin{bmatrix} I_a^a \\ I_b^a \\ I_c^a \end{bmatrix} = \begin{bmatrix} 1 \\ a^2 \\ a \end{bmatrix} \]

\[\begin{bmatrix} I_a^2 \\ I_b^2 \\ I_c^2 \end{bmatrix} = \begin{bmatrix} 1 \\ a \\ a^2 \end{bmatrix} \]

\[\begin{bmatrix} I_a^3 \\ I_b^3 \\ I_c^3 \end{bmatrix} = \begin{bmatrix} 1 \\ a \end{bmatrix} \]

จะได้

\[\begin{bmatrix} I_a^3 \\ I_b^3 \\ I_c^3 \end{bmatrix} = \begin{bmatrix} 2.7523\angle -90^\circ \\ 0 \\ 0 \end{bmatrix} \]

- หากระแสฟอลต์เฟสต่างๆ ที่บัส 1 ขณะเกิดฟอลต์

\[\begin{bmatrix} V_1^a(0) \\ V_1^b(0) \\ V_1^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{13}^0 I_3^a \\ 0 - Z_{13}^b I_3^a \\ 0 - Z_{13}^c I_3^a \end{bmatrix} \]

\[\begin{bmatrix} V_2^a(0) \\ V_2^b(0) \\ V_2^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{23}^0 I_3^a \\ 0 - Z_{23}^b I_3^a \\ 0 - Z_{23}^c I_3^a \end{bmatrix} \]

- บริบท 1

\[\begin{bmatrix} V_1^a(0) \\ V_1^b(0) \\ V_1^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{13}^0 I_3^a \\ 0 - Z_{13}^b I_3^a \\ 0 - Z_{13}^c I_3^a \end{bmatrix} \]

\[\begin{bmatrix} V_2^a(0) \\ V_2^b(0) \\ V_2^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{23}^0 I_3^a \\ 0 - Z_{23}^b I_3^a \\ 0 - Z_{23}^c I_3^a \end{bmatrix} \]

- บริบท 2

\[\begin{bmatrix} V_1^a(0) \\ V_1^b(0) \\ V_1^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{13}^0 I_3^a \\ 0 - Z_{13}^b I_3^a \\ 0 - Z_{13}^c I_3^a \end{bmatrix} \]

\[\begin{bmatrix} V_2^a(0) \\ V_2^b(0) \\ V_2^c(0) \end{bmatrix} = \begin{bmatrix} 0 - Z_{23}^0 I_3^a \\ 0 - Z_{23}^b I_3^a \\ 0 - Z_{23}^c I_3^a \end{bmatrix} \]
ปัส 3

\[
\begin{align*}
V_3^0(F) &= 0 - Z_3^0 I_3^0 \\
V_3^a(F) &= V_3^0(F) - Z_3 I_3^a \\
V_3^2(F) &= 0 - Z_3 I_3^2
\end{align*}
\]

หาแรงดันเฟสแต่ละบัส ขณะเกิดฟอลต์

จาก

\[
\begin{bmatrix}
V_i^a(F) \\
V_i^b(F) \\
V_i^c(F)
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
V_i^0(F) \\
V_i^a(F) \\
V_i^2(F)
\end{bmatrix}
\]

ปัส 1

\[
\begin{align*}
V_i^a(F) &= 1 - 0.1284 \\
V_i^b(F) &= 1 - 0.8807 \\
V_i^c(F) &= 1 - 0.1193
\end{align*}
\]

หาส่วนประกอบสมมาตรของกระแสแต่ละกิ่ง ขณะเกิดฟอลต์

\[
I_{y0} = \frac{V_i^0(F) - V_j^0(F)}{Z_{ij}^0} \\
I_{y1} = \frac{V_i^a(F) - V_j^a(F)}{Z_{ij}^1} \\
I_{y2} = \frac{V_i^2(F) - V_j^2(F)}{Z_{ij}^2}
\]

ปัส 2

\[
\begin{align*}
V_2^0(F) &= 1 - 0.0596 \\
V_2^a(F) &= 1 - 0.8899 \\
V_2^c(F) &= 1 - 0.1101
\end{align*}
\]

หรือ

\[
\begin{align*}
V_2^0(F) &= 0.7207 \angle 0^\circ \\
V_2^a(F) &= 0.9757 \angle -117.43^\circ \\
V_2^c(F) &= 0.9757 \angle +117.43^\circ
\end{align*}
\]

ปัส 3

\[
\begin{align*}
V_3^0(F) &= 0 - 0.3211 \\
V_3^a(F) &= 0 - 0.7982 \\
V_3^2(F) &= 0 - 0.2018
\end{align*}
\]

การส่วนประกอบสมมาตรของกระแสแต่ละกิ่ง ขณะเกิดฟอลต์

\[
\begin{align*}
I_{y0} &= \frac{V_i^0(F) - V_j^0(F)}{Z_{ij}^0} \\
I_{y1} &= \frac{V_i^a(F) - V_j^a(F)}{Z_{ij}^1} \\
I_{y2} &= \frac{V_i^2(F) - V_j^2(F)}{Z_{ij}^2}
\end{align*}
\]

หรือ

\[
\begin{align*}
I_{y0} &= 0.633 \angle 0^\circ \\
I_{y1} &= 1.0046 \angle -120.45^\circ \\
I_{y2} &= 1.0046 \angle +120.45^\circ
\end{align*}
\]
หากระแสเฟสแต่ละกิ่ง ขณะเกิดฟอลต์

จาก

gkที่วิ่งจาก 2 → 1

\[
\begin{bmatrix}
I_{a1}^0 \\
I_{a1}^1 \\
I_{a1}^2
\end{bmatrix} = \begin{bmatrix}
V_{z1}^0(F) - V_{z1}^a(F) \\
V_{z1}^1(F) - V_{z1}^a(F) \\
V_{z1}^2(F) - V_{z1}^a(F)
\end{bmatrix} \begin{bmatrix}
Z_{21}^0 \\
Z_{21}^1 \\
Z_{21}^2
\end{bmatrix} = \begin{bmatrix}
-0.0596 \cdot (0.1284) \\
0.3 \\
-0.1101 \cdot (-0.1193)
\end{bmatrix}
\]

\[j0.125 \quad 0.125 \quad 0.125\]

\[\begin{bmatrix}
I_{a1}^0 \\
I_{a1}^1 \\
I_{a1}^2
\end{bmatrix} = \begin{bmatrix}
V_{z1}^0(F) - V_{z1}^a(F) \\
V_{z1}^1(F) - V_{z1}^a(F) \\
V_{z1}^2(F) - V_{z1}^a(F)
\end{bmatrix} \begin{bmatrix}
Z_{21}^0 \\
Z_{21}^1 \\
Z_{21}^2
\end{bmatrix} = \begin{bmatrix}
-0.0596 \cdot (0.3211) \\
0.7125 \\
-0.1101 \cdot (-0.2018)
\end{bmatrix}
\]

\[j0.125 \quad 0.125 \quad 0.125\]

\[\begin{bmatrix}
I_{a1}^0 \\
I_{a1}^1 \\
I_{a1}^2
\end{bmatrix} = \begin{bmatrix}
V_{z1}^0(F) - V_{z1}^a(F) \\
V_{z1}^1(F) - V_{z1}^a(F) \\
V_{z1}^2(F) - V_{z1}^a(F)
\end{bmatrix} \begin{bmatrix}
Z_{21}^0 \\
Z_{21}^1 \\
Z_{21}^2
\end{bmatrix} = \begin{bmatrix}
-0.1284 \cdot (-0.3211) \\
0.8807 \cdot (-0.7982) \\
-0.1193 \cdot (-0.2018)
\end{bmatrix}
\]

\[j0.125 \quad 0.125 \quad 0.125\]

\[\begin{bmatrix}
I_{a1}^0 \\
I_{a1}^1 \\
I_{a1}^2
\end{bmatrix} = \begin{bmatrix}
V_{z1}^0(F) - V_{z1}^a(F) \\
V_{z1}^1(F) - V_{z1}^a(F) \\
V_{z1}^2(F) - V_{z1}^a(F)
\end{bmatrix} \begin{bmatrix}
Z_{21}^0 \\
Z_{21}^1 \\
Z_{21}^2
\end{bmatrix} = \begin{bmatrix}
-0.1284 \cdot (-0.3211) \\
0.8807 \cdot (-0.7982) \\
-0.1193 \cdot (-0.2018)
\end{bmatrix}
\]

\[j0.125 \quad 0.125 \quad 0.125\]
2. Line to Line Fault

\[
\begin{align*}
\begin{bmatrix}
I_{21}^a(F) \\
I_{21}^b(F) \\
I_{21}^c(F)
\end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 \\
a^2 & a & 1 \\
a & a^2 & 1
\end{bmatrix} \begin{bmatrix} I_{21}^0 \\
I_{21}^{a1} \\
I_{21}^{c2}
\end{bmatrix} + \begin{bmatrix} 0.2294 \angle -90^\circ \\
0.0734 \angle -90^\circ \\
0.0734 \angle -90^\circ
\end{bmatrix} \\
&= \begin{bmatrix} 0.3761 \angle -90^\circ \\
0.1560 \angle -90^\circ \\
0.1560 \angle -90^\circ
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
I_{13}^a(F) \\
I_{13}^b(F) \\
I_{13}^c(F)
\end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 \\
a^2 & a & 1 \\
a & a^2 & 1
\end{bmatrix} \begin{bmatrix} I_{13}^0 \\
I_{13}^{a1} \\
I_{13}^{c2}
\end{bmatrix} + \begin{bmatrix} 0.5505 \angle -90^\circ \\
0.5505 \angle -90^\circ \\
0.5505 \angle -90^\circ
\end{bmatrix} \\
&= \begin{bmatrix} 1.6514 \angle -90^\circ \\
0 \\
0
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
I_{23}^a(F) \\
I_{23}^b(F) \\
I_{23}^c(F)
\end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 \\
a^2 & a & 1 \\
a & a^2 & 1
\end{bmatrix} \begin{bmatrix} I_{23}^0 \\
I_{23}^{a1} \\
I_{23}^{c2}
\end{bmatrix} + \begin{bmatrix} 0.3670 \angle -90^\circ \\
0.3670 \angle -90^\circ \\
0.3670 \angle -90^\circ
\end{bmatrix} \\
&= \begin{bmatrix} 1.1009 \angle -90^\circ \\
0 \\
0
\end{bmatrix}
\end{align*}
\]
กรณี Line to Line Fault ที่บัส 3 ($Z_f = 0.1$)

• หาส่วนประกอบสมมาตรของกระแสฟอลต์ที่บัส 3

\[I_k^0 = I_3^0 = 0 \]

\[I_k^a = -I_k^a = \frac{V_k(0)}{Z_k^1 + Z_k^2 + Z_f} \]

\[I_k^b = -I_k^b = \frac{V_k(0)}{Z_k^1 + Z_k^2 + Z_f} \]

\[
\frac{1.0}{j0.22 + j0.22 + j0.1} = -j1.8519
\]

หากระแสฟอลต์เฟสต่างๆ ที่บัส 3 ขณะเกิดฟอลต์ได้จาก

\[
\begin{bmatrix}
I_a^0 \\
I_b^0 \\
I_c^0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_a^0 \\
I_b^0 \\
I_c^0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
0 \\
-1j.8519 \\
-1j.8519
\end{bmatrix}
\]

จะได้

\[
\begin{bmatrix}
I_a^0 \\
I_b^0 \\
I_c^0
\end{bmatrix}
= \begin{bmatrix}
-3.2075 \\
3.2075
\end{bmatrix}
\]

หาส่วนประกอบสมมาตรของแรงดันแต่ละบัส ขณะเกิดฟอลต์

\[
V_i^0(F) = 0 - Z_k^0 I_k^0 \\
V_i^a(F) = V_i^a(0) - Z_k^1 I_k^a \\
V_i^b(F) = V_i^b(0) - Z_k^2 I_k^b \\
V_i^c(F) = V_i^c(0) - Z_k^3 I_k^c
\]

\[I_k^0 = 0 \] เขียนเป็นแบบเวกเตอร์ได้เป็น

\[
\begin{bmatrix}
V_i^0(F) \\
V_i^a(F) \\
V_i^b(F) \\
V_i^c(F)
\end{bmatrix}
= \begin{bmatrix}
0 \\
V_i^a(0) - Z_k^1 I_k^a \\
V_i^b(0) - Z_k^2 I_k^b \\
V_i^c(0) - Z_k^3 I_k^c
\end{bmatrix}
\]

\[I_k^a = -I_k^b \] เรื่องนี้นิยามก่อนเกิดฟอลต์

ปัจจุบัน 1

\[
\begin{bmatrix}
V_1^a(F) \\
V_1^b(F) \\
V_2^a(F) \\
V_2^b(F)
\end{bmatrix}
= \begin{bmatrix}
0 \\
V_1^a(0) - Z_k^1 I_3^a \\
V_2^a(0) - Z_k^2 I_3^a \\
0 - j0.130(-1j.8519)
\end{bmatrix}
= \begin{bmatrix}
0 \\
0.7593 \\
0.2407
\end{bmatrix}
\]

ปัจจุบัน 2

\[
\begin{bmatrix}
V_1^a(F) \\
V_1^b(F) \\
V_2^a(F) \\
V_2^b(F)
\end{bmatrix}
= \begin{bmatrix}
0 \\
V_1^a(0) - Z_k^1 I_3^a \\
V_2^a(0) - Z_k^2 I_3^a \\
0 - j0.120(-1j.8519)
\end{bmatrix}
= \begin{bmatrix}
0 \\
0.7778 \\
0.2222
\end{bmatrix}
\]
หาแรงดันเฟสแต่ละบัส ขณะเกิดฟอลต์

จาก

\[
\begin{bmatrix}
V_{i}^{a}(F) \\
V_{i}^{b}(F) \\
V_{i}^{c}(F)
\end{bmatrix}
=\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
V_{i}^{a0}(F) \\
V_{i}^{b0}(F) \\
V_{i}^{c0}(F)
\end{bmatrix}
=\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
0 \\
0.7778 \\
0.2222
\end{bmatrix}
\]

\[
=\begin{bmatrix}
1\angle0^\circ \\
0.6939\angle-136.10^\circ \\
0.6939\angle+136.10^\circ
\end{bmatrix}
\]

หาส่วนประกอบสมมาตรของกระแสแต่ละกิ่ง ขณะเกิดฟอลต์

\[
I_{y}^{a0} = \frac{V_{i}^{a0}(F)-V_{i}^{a0}(F)}{Z_{ij}^{0}}
\]

\[
I_{y}^{a1} = \frac{V_{i}^{a1}(F)-V_{i}^{a1}(F)}{Z_{ij}^{1}}
\]

\[
I_{y}^{a2} = \frac{V_{i}^{a2}(F)-V_{i}^{a2}(F)}{Z_{ij}^{2}}
\]

\[
\begin{bmatrix}
I_{y}^{a0} \\
I_{y}^{a1} \\
I_{y}^{a2}
\end{bmatrix}
=\begin{bmatrix}
V_{i}^{a0}(F)-V_{i}^{a0}(F) \\
V_{i}^{a1}(F)-V_{i}^{a1}(F) \\
V_{i}^{a2}(F)-V_{i}^{a2}(F)
\end{bmatrix}
\]

\[
=\begin{bmatrix}
1\angle0^\circ \\
0.672\angle-138.07^\circ \\
0.672\angle+138.07^\circ
\end{bmatrix}
\]

\[
=\begin{bmatrix}
0.5251\angle-162.21^\circ \\
0.5251\angle+162.21^\circ
\end{bmatrix}
\]
หากระแสเฟสแต่ละกิ่งขณะเกิดฟอลต์ ณ 1, 2, 3:

กิ่งที่วิ่งจาก 2 → 1

\[
\begin{bmatrix}
I_{21}^d \\
I_{21}^a \\
I_{21}^s
\end{bmatrix} =
\begin{bmatrix}
V_{21}^0(F) - V_{11}^0(F) \\
V_{21}^s(F) - V_{11}^s(F) \\
V_{21}^s(F) - V_{11}^s(F)
\end{bmatrix}
\begin{bmatrix}
Z_{21}^0 \\
Z_{21}^s \\
Z_{21}^2
\end{bmatrix}^{-1}
= \begin{bmatrix}
0 - (0) \\
0.7778 - (0.7593) \\
0.2222 - (0.2407)
\end{bmatrix}
\begin{bmatrix}
j0.3 \\
j0.125 \\
j0.125
\end{bmatrix}
= \begin{bmatrix}
0 \\
0.148\angle -90^\circ \\
0.148\angle +90^\circ
\end{bmatrix}
\]

กิ่งที่วิ่งจาก 1 → 3

\[
\begin{bmatrix}
I_{13}^d \\
I_{13}^a \\
I_{13}^s
\end{bmatrix} =
\begin{bmatrix}
V_{13}^0(F) - V_{33}^0(F) \\
V_{13}^s(F) - V_{33}^s(F) \\
V_{13}^s(F) - V_{33}^s(F)
\end{bmatrix}
\begin{bmatrix}
Z_{13}^0 \\
Z_{13}^s \\
Z_{13}^2
\end{bmatrix}^{-1}
= \begin{bmatrix}
0 - (0) \\
0.7778 - (0.5926) \\
0.2222 - (0.4074)
\end{bmatrix}
\begin{bmatrix}
j0.35 \\
j0.15 \\
j0.15
\end{bmatrix}
= \begin{bmatrix}
0 \\
1.111\angle -90^\circ \\
1.111\angle +90^\circ
\end{bmatrix}
\]

กิ่งที่วิ่งจาก 2 → 3

\[
\begin{bmatrix}
I_{23}^d \\
I_{23}^a \\
I_{23}^s
\end{bmatrix} =
\begin{bmatrix}
V_{23}^0(F) - V_{33}^0(F) \\
V_{23}^s(F) - V_{33}^s(F) \\
V_{23}^s(F) - V_{33}^s(F)
\end{bmatrix}
\begin{bmatrix}
Z_{23}^0 \\
Z_{23}^s \\
Z_{23}^2
\end{bmatrix}^{-1}
= \begin{bmatrix}
0 - (0) \\
0.7778 - (0.5926) \\
0.2222 - (0.4074)
\end{bmatrix}
\begin{bmatrix}
j0.7125 \\
j0.25 \\
j0.25
\end{bmatrix}
= \begin{bmatrix}
0 \\
0.7407\angle -90^\circ \\
0.7407\angle +90^\circ
\end{bmatrix}
\]
$$\begin{align*}
\begin{bmatrix}
I_{21}^a(F) \\
I_{21}^b(F) \\
I_{21}^c(F)
\end{bmatrix} &=
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{21}^0 \\
I_{21}^a \\
I_{21}^c
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
0.148 \angle -90^\circ \\
0.148 \angle +90^\circ
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
-0.2566 \\
0.2566
\end{bmatrix}
\end{align*}$$

$$\begin{align*}
\begin{bmatrix}
I_{31}^a(F) \\
I_{31}^b(F) \\
I_{31}^c(F)
\end{bmatrix} &=
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{31}^0 \\
I_{31}^a \\
I_{31}^c
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
1.1111 \angle -90^\circ \\
1.1111 \angle +90^\circ
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
-1.9245 \\
1.9245
\end{bmatrix}
\end{align*}$$

$$\begin{align*}
\begin{bmatrix}
I_{23}^a(F) \\
I_{23}^b(F) \\
I_{23}^c(F)
\end{bmatrix} &=
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{23}^0 \\
I_{23}^a \\
I_{23}^c
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
0.7407 \angle -90^\circ \\
0.7407 \angle +90^\circ
\end{bmatrix} \\
&=
\begin{bmatrix}
0 \\
-1.283 \\
1.283
\end{bmatrix}
\end{align*}$$

3. Double Line to Ground Fault
กรณี Double Line to Ground Fault ที่บัส 3 ($Z_f = 0.1$)

- หาส่วนประกอบสมมาตรของกระแสฟอลต์ที่บัส 3

สัดส่วนบวก

\[I_k^a = \frac{V_k(0)}{Z_k^1 + \frac{Z_k^0}{Z_k^0 + 3Z_f}} \]

สัดส่วนลบ

\[I_k^b = \frac{-V_k(0) - Z_k^1 f_k^a}{Z_k^0} \]

สัดส่วนศูนย์

\[I_k^0 = \frac{V_k(0) - Z_k^1 f_k^a}{Z_k^0 + 3Z_f} \quad k = 3 \]

\[
\begin{align*}
I_1^a &= \frac{V_1(0)}{Z_1^1 + \frac{Z_1^0}{Z_1^0 + 3Z_f}} \\
I_2^a &= \frac{V_2(0)}{Z_2^1 + \frac{Z_2^0}{Z_2^0 + 3Z_f}} \\
I_3^a &= \frac{V_3(0)}{Z_3^1 + \frac{Z_3^0}{Z_3^0 + 3Z_f}} \\
I_1^b &= \frac{-V_1(0) - Z_1^1 f_1^a}{Z_1^0} \\
I_2^b &= \frac{-V_2(0) - Z_2^1 f_2^a}{Z_2^0} \\
I_3^b &= \frac{-V_3(0) - Z_3^1 f_3^a}{Z_3^0} \\
I_1^0 &= \frac{V_1(0) - Z_1^1 f_1^a}{Z_1^0 + 3Z_f} \\
I_2^0 &= \frac{V_2(0) - Z_2^1 f_2^a}{Z_2^0 + 3Z_f} \\
I_3^0 &= \frac{V_3(0) - Z_3^1 f_3^a}{Z_3^0 + 3Z_f}
\end{align*}
\]

\[
\begin{align*}
I_1^a &= \frac{1.0}{j0.22 + j0.22(0.35 + 3(0.1))} \\
&= \frac{1.0}{j0.22 + j0.22 + j0.35 + 3(0.1)} \\
&= j2.6017
\end{align*}
\]

\[
\begin{align*}
I_2^a &= \frac{1.0 - j0.22(-j2.6017)}{j0.22} \\
&= j1.9438
\end{align*}
\]

\[
\begin{align*}
I_3^a &= \frac{1.0 - j0.22(-j2.6017)}{j0.35 + 3(0.1)} \\
&= j0.6579
\end{align*}
\]
หากระแสฟอลต์ต่างๆ ที่บัส 3 ขณะเกิดฟอลต์ได้จาก

\[
\begin{bmatrix}
I_d^b \\
I_d^a \\
I_d^s
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix} \begin{bmatrix}
I_d^{0} \\
I_d^{a1} \\
I_d^{a2}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix} \begin{bmatrix}
-j0.6579 \\
-j2.6017 \\
-j1.9438
\end{bmatrix} = \begin{bmatrix}
0 \\
4.0583\angle165.93^\circ \\
4.0583\angle14.07^\circ
\end{bmatrix}
\]

จะได้กระแสฟอลต์ทั้งหมดที่ไหลลงดิน \(I_d^b + I_d^a \)

\[I_d^b + I_d^a = 4.0583\angle165.93^\circ - 4.0583\angle14.07^\circ = 1.9732\angle90^\circ \]

หาส่วนประกอบสมมาตรของแรงดันแต่ละบัส ขณะเกิดฟอลต์

\[
V_i^{a0}(F) = 0 - Z_i^0 I_k^0 \\
V_i^{a1}(F) = V_i^i(0) - Z_i^1 I_k^{a1} \\
V_i^{a2}(F) = 0 - Z_i^2 I_k^{a2}
\]

จาก

\[
V_i^{a0}(F) = V_i^i(0) - Z_i^1 I_k^{a1} \\
V_i^{a2}(F) = 0 - Z_i^2 I_k^{a2}
\]

เขียนเป็นเมตริกได้เป็น

\[
\begin{bmatrix}
V_i^{a0}(F) \\
V_i^{a1}(F) \\
V_i^{a2}(F)
\end{bmatrix} = \begin{bmatrix}
0 - Z_i^0 I_k^0 \\
0 - Z_i^0 I_k^0 \\
0 - Z_i^0 I_k^0
\end{bmatrix}
\]

บั้ง 1

\[
\begin{bmatrix}
V_1^{a0}(F) \\
V_1^{a1}(F) \\
V_1^{a2}(F)
\end{bmatrix} = \begin{bmatrix}
0 - Z_i^0 I_k^0 \\
V_i^i(0) - Z_i^1 I_k^{a1} \\
0 - Z_i^0 I_k^0
\end{bmatrix} = \begin{bmatrix}
0 - j0.140(j0.6579) \\
1 - j0.130(-j2.6017) \\
0 - j0.130(j1.9438)
\end{bmatrix} = \begin{bmatrix}
0.0921 \\
0.6618 \\
0.2527
\end{bmatrix}
\]

บั้ง 2

\[
\begin{bmatrix}
V_2^{a0}(F) \\
V_2^{a1}(F) \\
V_2^{a2}(F)
\end{bmatrix} = \begin{bmatrix}
0 - Z_i^0 I_k^0 \\
V_i^i(0) - Z_i^1 I_k^{a1} \\
0 - Z_i^0 I_k^0
\end{bmatrix} = \begin{bmatrix}
0 - j0.065(j0.6579) \\
1 - j0.120(-j2.6017) \\
0 - j0.120(j1.9438)
\end{bmatrix} = \begin{bmatrix}
0.0428 \\
0.6878 \\
0.2333
\end{bmatrix}
\]

บั้ง 3

\[
\begin{bmatrix}
V_3^{a0}(F) \\
V_3^{a1}(F) \\
V_3^{a2}(F)
\end{bmatrix} = \begin{bmatrix}
0 - Z_i^0 I_k^0 \\
V_i^i(0) - Z_i^1 I_k^{a1} \\
0 - Z_i^0 I_k^0
\end{bmatrix} = \begin{bmatrix}
0 - j0.350(j0.6579) \\
1 - j0.220(-j2.6017) \\
0 - j0.220(j1.9438)
\end{bmatrix} = \begin{bmatrix}
0.2303 \\
0.4276 \\
0.4276
\end{bmatrix}
\]
หาแรงดันเฟสแต่ละบัส ขณะเกิดฟอลต์

จาก

$$V_i^0(F) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \quad V_i^{a0}(F) = \begin{bmatrix} v_i^0 \(F) \\ v_i^{a0}(F) \\ v_i^{a2}(F) \end{bmatrix}$$

$$V_i^1(F) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \quad V_i^{a1}(F) = \begin{bmatrix} v_i^0 \(F) \\ v_i^{a0}(F) \\ v_i^{a2}(F) \end{bmatrix}$$

$$V_i^2(F) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \quad V_i^{a2}(F) = \begin{bmatrix} v_i^0 \(F) \\ v_i^{a0}(F) \\ v_i^{a2}(F) \end{bmatrix}$$

$$\begin{align*}
0.0921 \\
0.6618 \\
0.2527
\end{align*}$$

$$\begin{align*}
0.0921 \\
0.6618 \\
0.2527
\end{align*}$$

$$\begin{align*}
0.0428 \\
0.6878 \\
0.2333
\end{align*}$$

$$\begin{align*}
0.0428 \\
0.6878 \\
0.2333
\end{align*}$$

หาส่วนประกอบสมมาตรของกระแสแต่ละกิ่ง ขณะเกิดฟอลต์

$$I_{ij} = \frac{V_i^0(F) - V_j^0(F)}{Z_{ij}}$$

$$I_{ij} = \frac{V_i^{a0}(F) - V_j^{a0}(F)}{Z_{ij}}$$

$$I_{ij} = \frac{V_i^{a1}(F) - V_j^{a1}(F)}{Z_{ij}}$$

$$I_{ij} = \frac{V_i^{a2}(F) - V_j^{a2}(F)}{Z_{ij}}$$

$$\begin{align*}
I_{ij}^{a0} = \frac{V_i^{a0}(F) - V_j^{a0}(F)}{Z_{ij}} \\
I_{ij}^{a1} = \frac{V_i^{a1}(F) - V_j^{a1}(F)}{Z_{ij}} \\
I_{ij}^{a2} = \frac{V_i^{a2}(F) - V_j^{a2}(F)}{Z_{ij}}
\end{align*}$$

กิ่งที่วิ่งจาก $1 \rightarrow 2$

$$\begin{align*}
I_{ij}^{a0} = \frac{V_i^{a0}(F) - V_j^{a0}(F)}{Z_{ij}} \\
I_{ij}^{a1} = \frac{V_i^{a1}(F) - V_j^{a1}(F)}{Z_{ij}} \\
I_{ij}^{a2} = \frac{V_i^{a2}(F) - V_j^{a2}(F)}{Z_{ij}}
\end{align*}$$

$$\begin{align*}
\begin{bmatrix}
0.0921 - (0.0428) \\
0.6618 - (0.6878) \\
0.2527 - (0.2333)
\end{bmatrix}
\end{align*}$$

$$\begin{align*}
0.0921 - (0.0428) \\
0.6618 - (0.6878) \\
0.2527 - (0.2333)
\end{align*}$$

$$\begin{align*}
0.0921 - (0.0428) \\
0.6618 - (0.6878) \\
0.2527 - (0.2333)
\end{align*}$$

$$\begin{align*}
0.0921 - (0.0428) \\
0.6618 - (0.6878) \\
0.2527 - (0.2333)
\end{align*}$$
หากระแสเฟสแต่ละกิ่ง ขณะเกิดฟอลต์

จาก

ที่วิ่งจาก 1 ถึง 3

\[
\begin{bmatrix}
I_{d0}^{a} \\
I_{d1}^{a} \\
I_{d2}^{a}
\end{bmatrix} =
\begin{bmatrix}
V^{a0}(F) - V^{a0}(F) \\
V^{a1}(F) - V^{a1}(F) \\
V^{a2}(F) - V^{a2}(F)
\end{bmatrix}
\begin{bmatrix}
Z_{d0}^{a} \\
Z_{d1}^{a} \\
Z_{d2}^{a}
\end{bmatrix}\]

= \begin{bmatrix}
0.0321 - (0.2303) j0.35 \\
0.6618 - (0.4276) j0.15 \\
0.2527 - (0.4276) j0.15
\end{bmatrix}

= \begin{bmatrix}
0.3947 \angle +90^\circ \\
1.5610 \angle -90^\circ \\
1.1663 \angle +90^\circ
\end{bmatrix}

ที่วิ่งจาก 2 ถึง 3

\[
\begin{bmatrix}
I_{d0}^{a} \\
I_{d1}^{a} \\
I_{d2}^{a}
\end{bmatrix} =
\begin{bmatrix}
V^{a0}(F) - V^{a0}(F) \\
V^{a1}(F) - V^{a1}(F) \\
V^{a2}(F) - V^{a2}(F)
\end{bmatrix}
\begin{bmatrix}
Z_{d0}^{a} \\
Z_{d1}^{a} \\
Z_{d2}^{a}
\end{bmatrix}\]

= \begin{bmatrix}
0.0428 - (0.2303) j0.7125 \\
0.1287 - (0.4276) j0.25 \\
0.2333 - (0.4276) j0.25
\end{bmatrix}

= \begin{bmatrix}
0.2632 \angle +90^\circ \\
1.0407 \angle -90^\circ \\
0.7775 \angle +90^\circ
\end{bmatrix}

หากระแสเฟสแต่ละกิ่ง ขณะเกิดพอลต์

จาก

ที่ 1 ถึง 2

\[
\begin{bmatrix}
I_{d0}^{a} \\
I_{d1}^{a} \\
I_{d2}^{a}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
I_{d0}^{a} \\
I_{d1}^{a} \\
I_{d2}^{a}
\end{bmatrix}
\]

= \begin{bmatrix}
1 & 1 & 1 \\
1 & a^2 & a \\
1 & a & a^2
\end{bmatrix}
\begin{bmatrix}
0.1645 \angle -90^\circ \\
0.2081 \angle +90^\circ \\
0.1555 \angle -90^\circ
\end{bmatrix}

= \begin{bmatrix}
0.1118 \angle -90^\circ \\
0.3682 \angle -31.21^\circ \\
0.3682 \angle -148.79^\circ
\end{bmatrix}
\[
\begin{bmatrix}
I^a_{13}(F) \\
I^b_{13}(F) \\
I^c_{13}(F)
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
\alpha^2 & \alpha & \alpha \\
\alpha & \alpha^2 & \alpha
\end{bmatrix} \begin{bmatrix}
I^a_{13} \\
I^b_{13} \\
I^c_{13}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
\alpha & \alpha^2 & \alpha \\
\alpha^2 & \alpha & \alpha
\end{bmatrix} \begin{bmatrix}
0.3947 \angle +90^\circ \\
1.5610 \angle -90^\circ \\
1.1663 \angle +90^\circ
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 \\
2.435 \angle 165.93^\circ \\
2.435 \angle 14.07^\circ
\end{bmatrix}
\]

\[
\begin{bmatrix}
I^a_{23}(F) \\
I^b_{23}(F) \\
I^c_{23}(F)
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
\alpha^2 & \alpha & \alpha \\
\alpha & \alpha^2 & \alpha
\end{bmatrix} \begin{bmatrix}
I^a_{23} \\
I^b_{23} \\
I^c_{23}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
\alpha & \alpha^2 & \alpha \\
\alpha^2 & \alpha & \alpha
\end{bmatrix} \begin{bmatrix}
0.2632 \angle +90^\circ \\
1.0407 \angle -90^\circ \\
0.7775 \angle +90^\circ
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 \\
1.6233 \angle 165.93^\circ \\
1.6233 \angle 14.07^\circ
\end{bmatrix}
\]

The End.

Good Luck !!